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GLM : individual level
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Model is specified by

N: number of scans 1. Design matrix X
p: number of regressors 2. Assumptions about
&




GLM : Several individuals
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JGrand GLM approach
(model all subjects at once)
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Mean effect, m=2.67
SEM,, = s,, /sqrt(N)=0.04
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Fixed effect modelling in SPM

JGrand GLM approach

(model all subjects at once)
subj. 1 —

JGood: subj. 2 —
» max dof
> Simple model subj. 3 —




JGrand GLM approach
(model all subjects at once)

JBad: —
> assumes common variance
over subjects at each voxel
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Fixed effect
Between subjects variability

RTs: 3 subjects, 4 conditions

] Standard GLM

assumes only one source
of I.1.d. random variation
] But, in general, there are at least

subject 1 subject 2 subject 3

two sources: 15 o residuals
» within subj. variance A (1] N SR N
» between subj. variance sl I

] Causes dependences in ¢




Statistics approach
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Statistics approach
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‘ Hierarchical model I Multiple variance components at
each level
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At each level, distribution of parameters is
given by level above.

What we don’t know: distribution of parameters
and variance parameters.




Lexicon

J Hierarchical models

JMixed effect models
JRandom effect (RFX) models
 Components of variance

... all the same
... all alluding to multiple sources of variation
(in contrast to fixed effects)
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Example: Two level model
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‘ Second level I

‘ First level I



Fixed vs random effects

J Fixed effects:
Intra-subjects variation
suggests all these subjects
different from zero

JRandom effects:

suggests population
not different from zero

Distributions of
each subject’s
estimated effect

subj. 1

subj. 2

subj. 3

subj. 4

subj. 5

subj. 6

Distribution of
population effect
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Robustness

Summary
statistics

Hierarchical
Model

Friston et al. (2004)
Mixed effects and fMRI

studies, Neuroimage




Statistics approach

JProcedure:
» Fit GLM for each subject |
and compute contrast estimate C,éi (first level)
»Analyze {Cléi}i—l n (second level)
J1- or 2- sample t test on contrast image
»Intra-subject variance not used
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Assumptions

1 Distribution
» Normality
» Independent subjects

dHomogeneous variance:
» Residual error the same for all subjects
»Balanced designs



Non sphericity modelling — basics

11 effect per subject
»Summary statistics approach

1>1 effects per subject
»non sphericity modelling
» Covariance components and ReML



Example 1: data

1 Stimuli:
» Auditory presentation (SOA = 4 sec)
» 250 scans per subject, block design
»Words, e.g. “book”
»\Words spoken backwards, e.g. “koob”

J Subjects:
» 12 controls
» 11 blind people



Multiple covariance components (l)

JE.qg., 2-sample t-test
» Errors are independent
but not identical.
» 2 covarilance components

Q,’s:

residuals covariance matrix



Example 1: population differences
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Example 2

J Stimuli:
» Auditory presentation (SOA = 4 sec)
» 250 scans per subject, block design

»Words: | Motion |Sound |Visual |Action

29

GCjump99 “CliCk,, Cépinkﬂﬂ C‘tum

J Subjects:
» 12 controls

J Question:

»What regions are affected by the semantic
content of the words?
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Example 2: repeated measures ANOVA

1: motion 2: sounds 3: visual 4: action
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Multiple covariance components (ll)

residuals covariance matrix

JErrors are not independent
and not identical
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Example 2: repeated measures ANOVA

1: motion 2: sounds 3: visual 4: action
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Fixed vs random effects

dFixed isn’'t “wrong”, just usually isn’t of interest

JSummary:
» Fixed effect inference:
‘I can see this effect in this cohort”
» Random effect inference:
“If | were to sample a new cohort from the same
population | would get the same result”



Group analysis: efficiency and power

 Efficiency = 1/ [estimator variance]
» goes up with n (number of subjects)
» c.f. “experimental design” talk

JPower = chance of detecting an effect
» goes up with degrees of freedom (dof = n-p).
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Flexible factorial design
Individual differences

RTs: 3 subjects, 4 conditions

subje_ct 1 subject2 subject3

residuals

Add a subject factor subject 1
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J Orthogonal regressors (=uncorrelated):

~AD HC Age TIV

parameters

J Non-orthogonal regressors (=correlated):
When testing for the first regressor, we are effectively
removing the part of the signal that can be accounted for by
the second regressor = implicit orthogonalisation.



Group analysis

J Hierarchical models

JMixed effect models
JRandom effect (RFX) models
 Components of variance

... all the same
Alternative multivariate (MAN(C)OVA) ...
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The Analysis of Functional Brain Images

[ Statistical Parametric Mapping: The Analysis of Functional
Brain Images. Elsevier, 2007.

 Generalisability, Random Effects & Population Inference.
Holmes & Friston, Neurolmage,1999.

[ Classical and Bayesian inference in neuroimaging: theory.
Friston et al., Neurolmage, 2002.

 Classical and Bayesian inference in neuroimaging: variance component

estimation in fMRI.
Friston et al., Neurolmage, 2002.

 Simple group fMRI modeling and inference.
Mumford & Nichols, Neuroimage, 2009.

With many thanks to G. Flandin, W. Penny, J.-B. Poline and Tom Nichols for slides.



