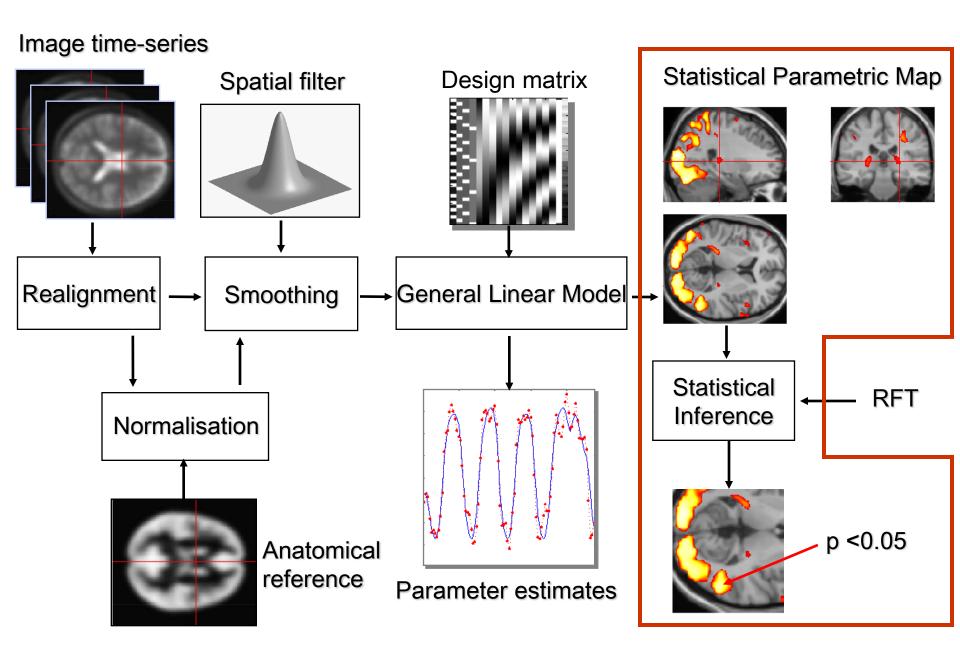
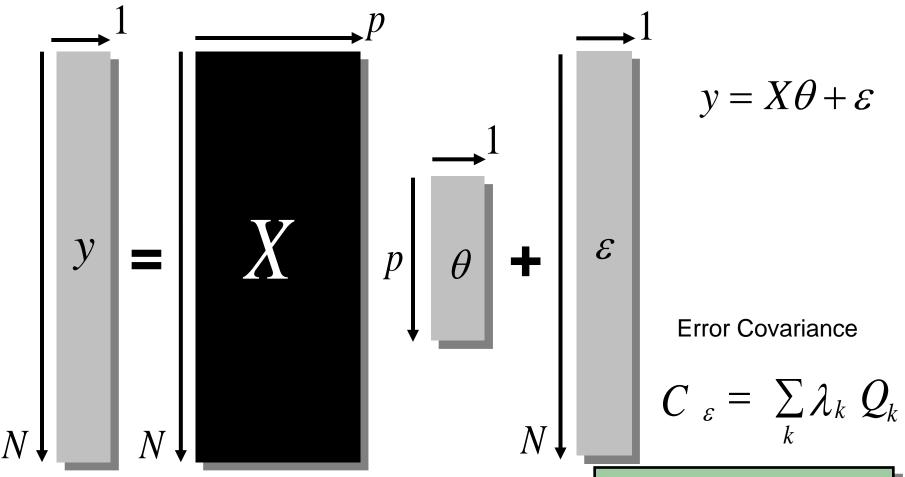


Group analysis

Kherif Ferath LREN





N: number of scans

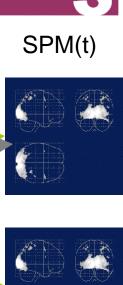
p: number of regressors

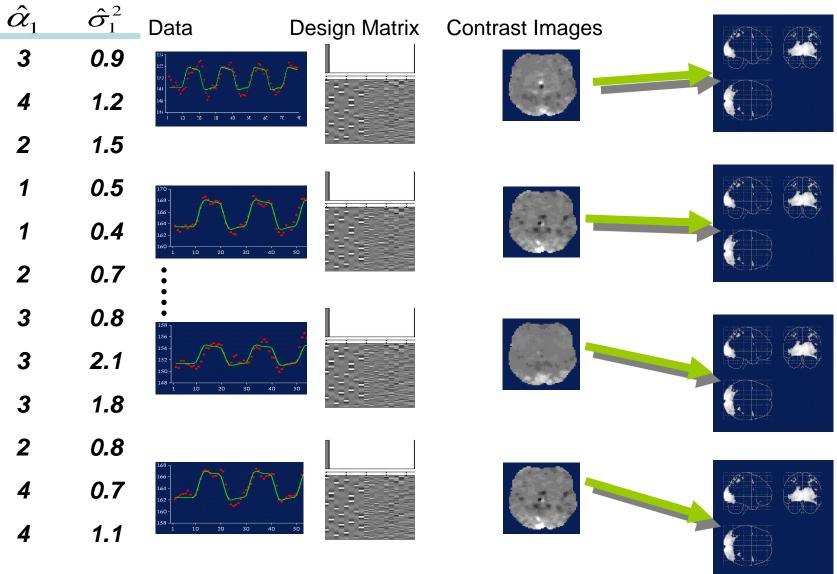
Model is specified by

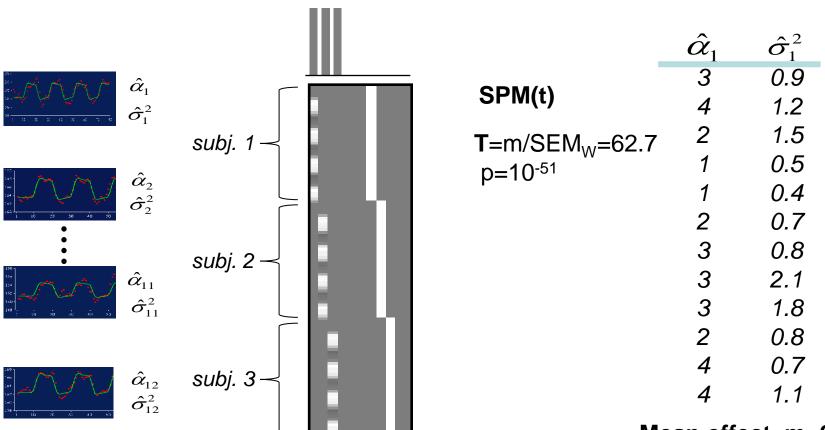
- Design matrix X
- 2. Assumptions about

 \mathcal{E}

GLM: Several individuals







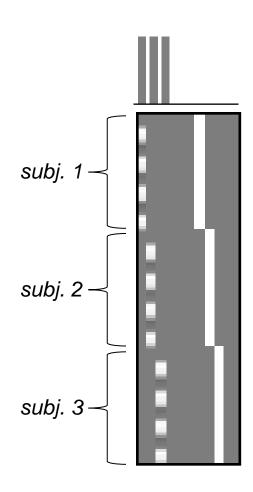
☐ Grand GLM approach (model all subjects at once)

Mean effect, m=2.67 $SEM_W = s_w / sqrt(N) = 0.04$

Fixed effect modelling in SPM

☐ Grand GLM approach (model all subjects at once)

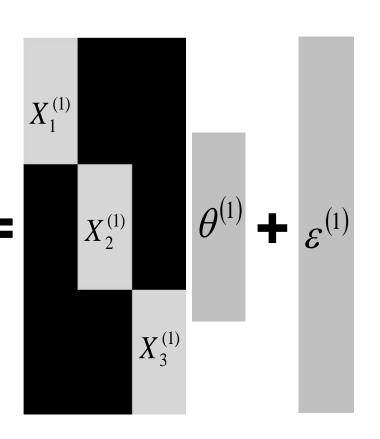
- ☐ Good:
 - max dof
 - simple model



Fixed effect

$$y = X^{(1)}\theta^{(1)} + \varepsilon^{(1)}$$

- ☐ Grand GLM approach (model all subjects at once)
- □Bad:
 - assumes common variance over subjects at each voxel



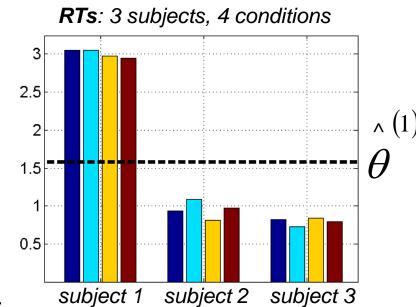
Between subjects variability

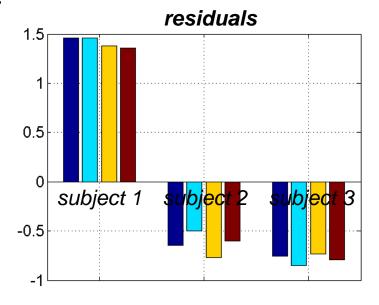
Standard GLM

$$y = X^{(1)}\theta^{(1)} + \varepsilon^{(1)}$$

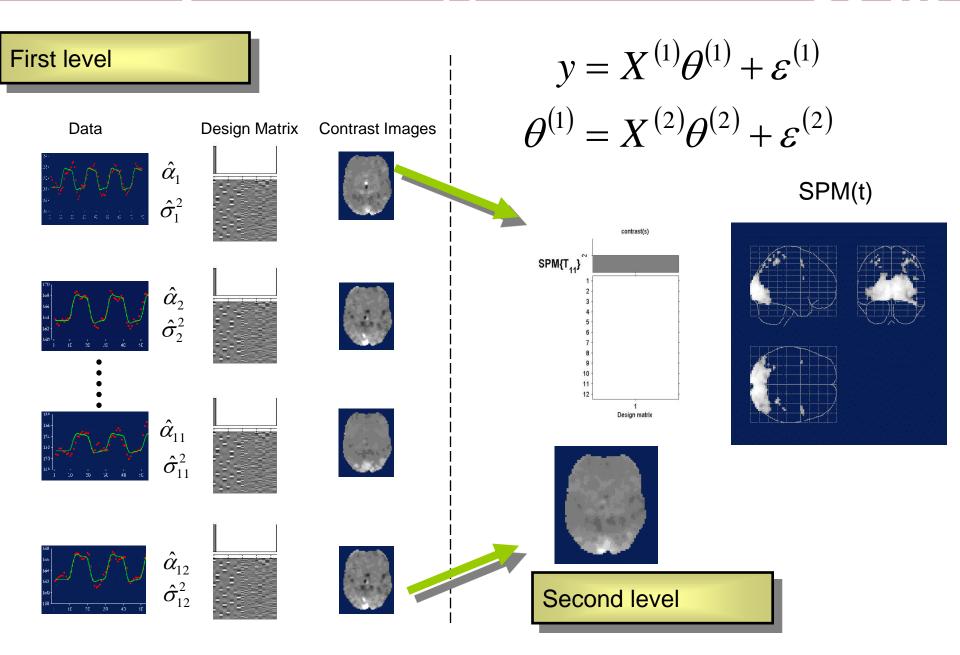
assumes only one source of i.i.d. random variation

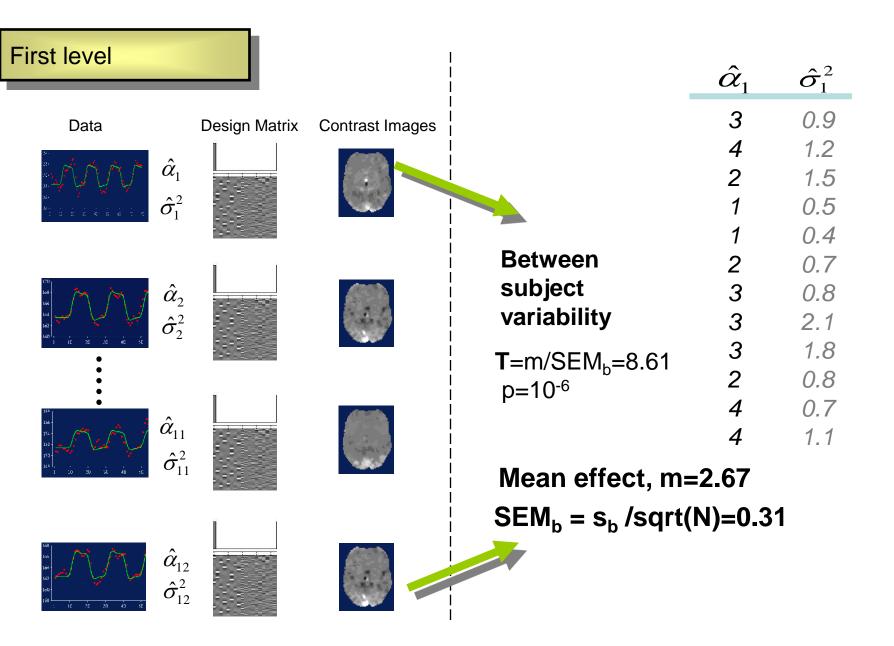
- But, in general, there are at least two sources:
 - within subj. variance
 - between subj. variance
- Causes dependences in ε





*SPM





Hierarchical model

Hierarchical model

$$y = X^{(1)}\theta^{(1)} + \varepsilon^{(1)}$$

$$\theta^{(1)} = X^{(2)}\theta^{(2)} + \varepsilon^{(2)}$$

$$\vdots$$

 $\theta^{(n-1)} = X^{(n)}\theta^{(n)} + \varepsilon^{(n)}$

Multiple variance components at each level

$$C_{\varepsilon}^{(i)} = \sum_{k} \lambda_{k}^{(i)} Q_{k}^{(i)}$$

At each level, distribution of parameters is given by level above.

What we don't know: distribution of parameters and variance parameters.

Lexicon

- Hierarchical models
- Mixed effect models
- ☐ Random effect (RFX) models
- Components of variance

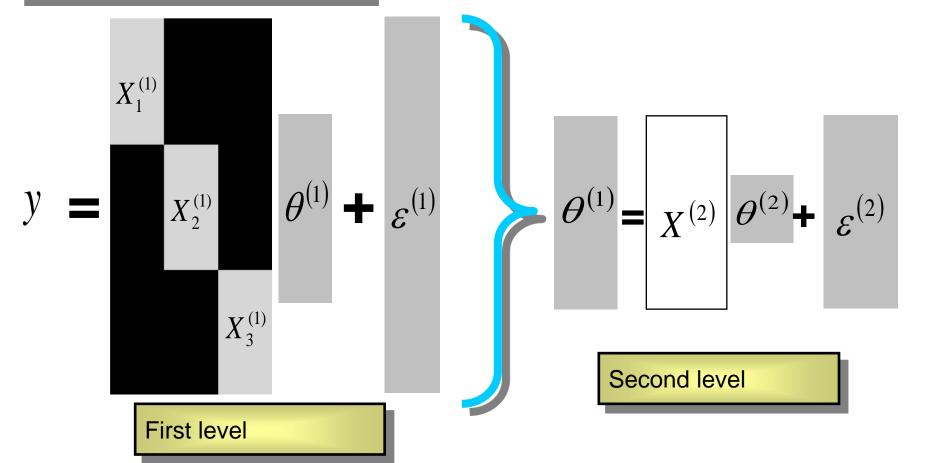
- ... all the same
- ... all alluding to multiple sources of variation (in contrast to fixed effects)

Hierarchical model

*SPM

$$y = X^{(1)}\theta^{(1)} + \varepsilon^{(1)}$$
$$\theta^{(1)} = X^{(2)}\theta^{(2)} + \varepsilon^{(2)}$$

Example: Two level model



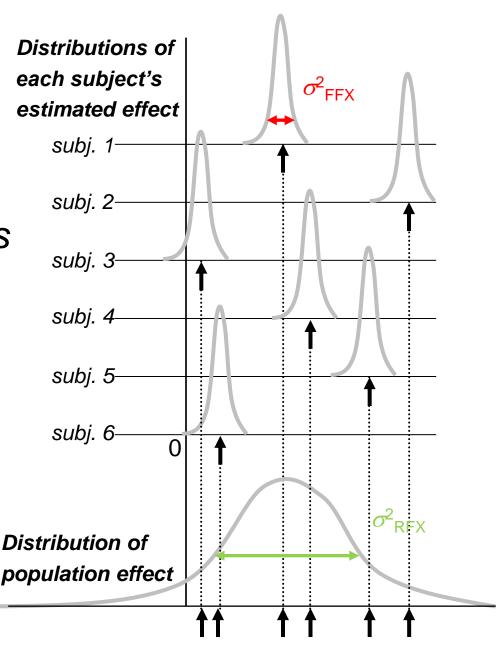
Fixed vs random effects

☐ Fixed effects:

Intra-subjects variation suggests all these subjects different from zero

☐ Random effects:

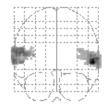
Inter-subjects variation suggests population not different from zero

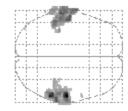


Robustness

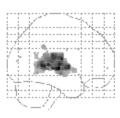
Summary statistics

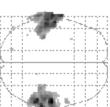


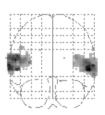




Hierarchical Model







Friston et al. (2004) Mixed effects and fMRI studies, Neuroimage

- Procedure:
 - Fit GLM for each subject i and compute contrast estimate $c\hat{\beta}_i$ (first level)
 - ightharpoonup Analyze $\left\{c\hat{eta}_i^i\right\}_{i=1,\dots,n}$ (second level)
- □ 1- or 2- sample *t* test on contrast image
 - >intra-subject variance not used

Assumptions

- Distribution
 - ➤ Normality
 - >Independent subjects
- ☐ Homogeneous variance:
 - > Residual error the same for all subjects
 - ➤ Balanced designs

Non sphericity modelling – basics

- □ 1 effect per subject
 - Summary statistics approach
- □>1 effects per subject
 - >non sphericity modelling
 - Covariance components and ReML

Example 1: data

- Stimuli:
 - Auditory presentation (SOA = 4 sec)
 - >250 scans per subject, block design
 - ➤ Words, e.g. "book"
 - ➤ Words spoken backwards, e.g. "koob"

- Subjects:
 - >12 controls
 - ➤ 11 blind people

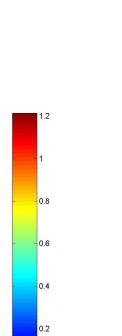
Multiple covariance components (I)

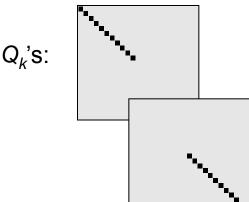
- ☐ E.g., 2-sample t-test
 - Errors are independent but not identical.

20 22

residuals covariance matrix

>2 covariance components

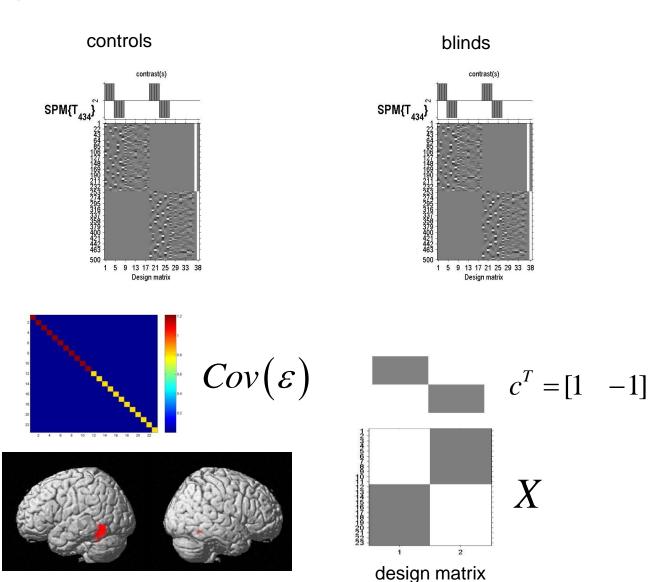




Example 1: population differences

□ 1st level

□2nd level



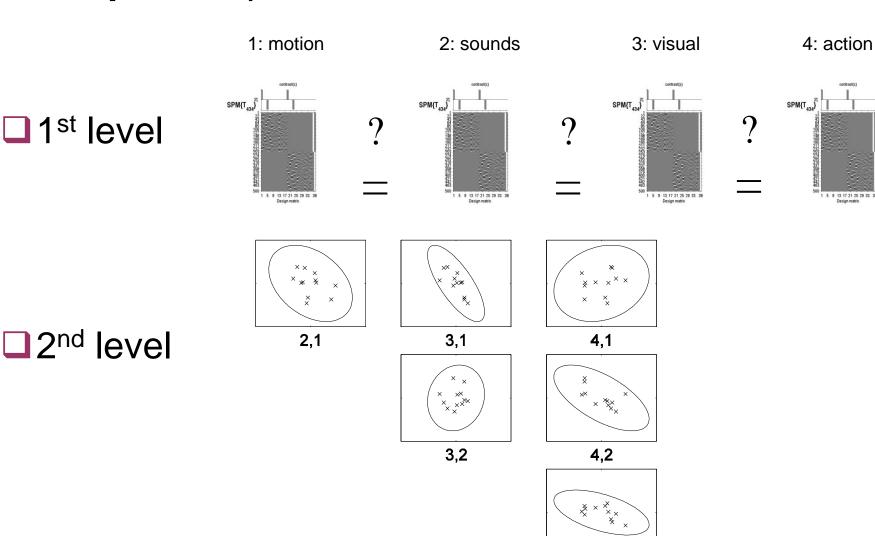
Example 2

- **□** Stimuli:
 - Auditory presentation (SOA = 4 sec)
 - >250 scans per subject, block design
 - ➤ Words:

Motion	Sound	Visual	Action
"jump"	"click"	"pink"	"turn"

- Subjects:
 - ≥12 controls
- Question:
 - What regions are affected by the semantic content of the words?

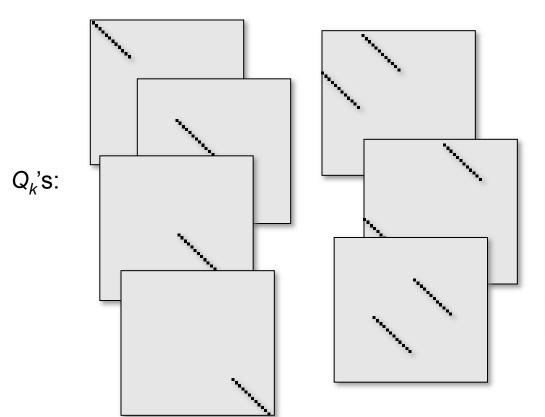
Example 2: repeated measures ANOVA

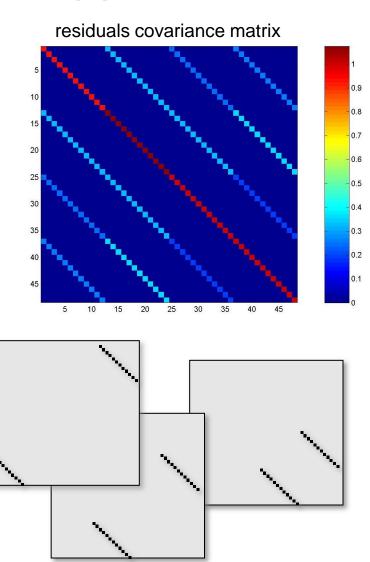


4,3

Multiple covariance components (II)

☐ Errors are not independent and not identical

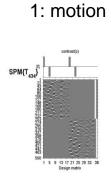




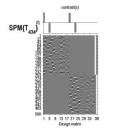
4: action

Example 2: repeated measures ANOVA

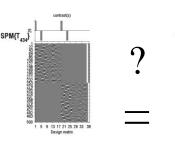
□1st level



2: sounds

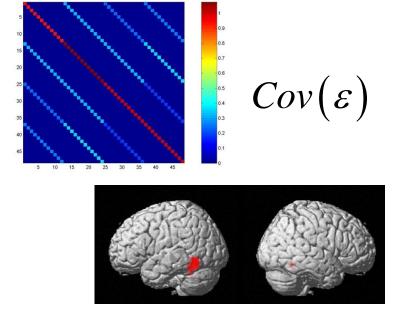


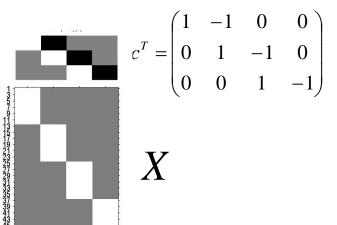
3: visual



SPM(T₄₃₄)

□ 2nd level





design matrix

Fixed vs random effects

- ☐ Fixed isn't "wrong", just usually isn't of interest
- Summary:
 - Fixed effect inference:
 - "I can see this effect in this cohort"
 - Random effect inference:

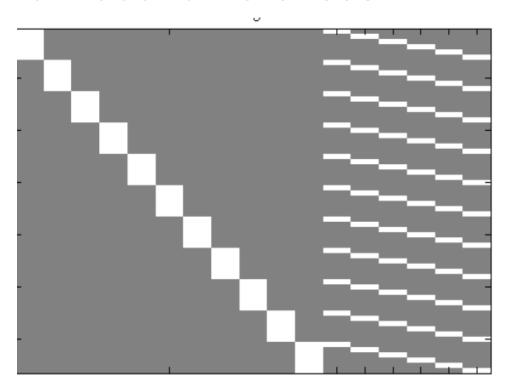
"If I were to sample a new cohort from the same population I would get the same result"

Group analysis: efficiency and power

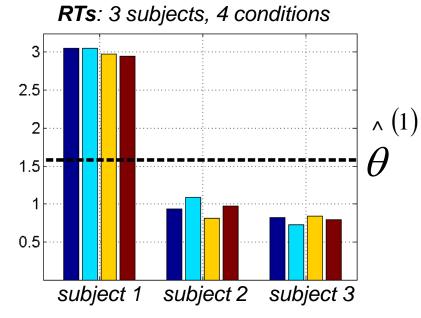
- Efficiency = 1/ [estimator variance]
 - goes up with n (number of subjects)
 - > c.f. "experimental design" talk
- Power = chance of detecting an effect
 - \triangleright goes up with degrees of freedom (dof = n-p).

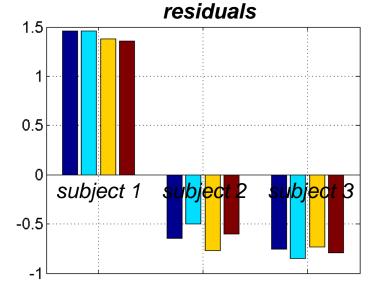
Flexible factorial design

Individual differences

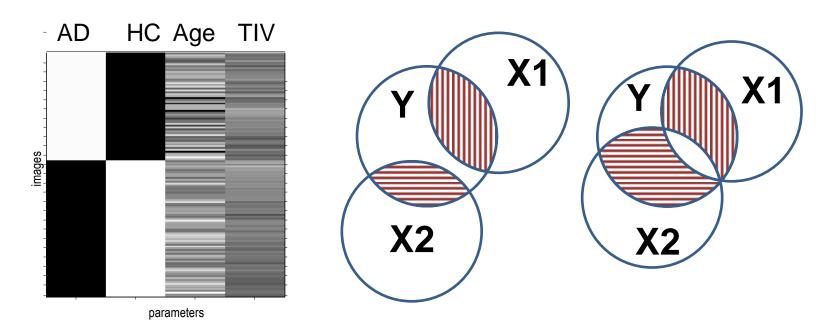


Add a subject factor





Orthogonal regressors (=uncorrelated):



Non-orthogonal regressors (=correlated): When testing for the first regressor, we are effectively removing the part of the signal that can be accounted for by the second regressor ⇒ implicit orthogonalisation.

Group analysis

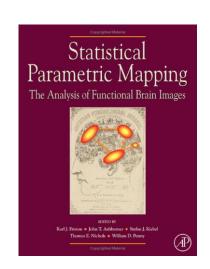
- Hierarchical models
- Mixed effect models
- ☐ Random effect (RFX) models
- Components of variance

... all the same

Alternative multivariate (MAN(C)OVA) ...

Bibliography:

- Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, 2007.
- Generalisability, Random Effects & Population Inference. Holmes & Friston, NeuroImage, 1999.
- Classical and Bayesian inference in neuroimaging: theory. Friston et al., Neurolmage, 2002.
- Classical and Bayesian inference in neuroimaging: variance component estimation in fMRI.
 Friston et al., Neurolmage, 2002.
- Simple group fMRI modeling and inference. Mumford & Nichols, Neuroimage, 2009.



With many thanks to G. Flandin, W. Penny, J.-B. Poline and Tom Nichols for slides.